3.96 \(\int \frac{-1+\sqrt{3}+x}{\sqrt{1-x^3}} \, dx\)

Optimal. Leaf size=143 \[ \frac{2 \sqrt{1-x^3}}{-x+\sqrt{3}+1}-\frac{\sqrt [4]{3} \sqrt{2-\sqrt{3}} (1-x) \sqrt{\frac{x^2+x+1}{\left (-x+\sqrt{3}+1\right )^2}} E\left (\sin ^{-1}\left (\frac{-x-\sqrt{3}+1}{-x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{\sqrt{\frac{1-x}{\left (-x+\sqrt{3}+1\right )^2}} \sqrt{1-x^3}} \]

[Out]

(2*Sqrt[1 - x^3])/(1 + Sqrt[3] - x) - (3^(1/4)*Sqrt[2 - Sqrt[3]]*(1 - x)*Sqrt[(1 + x + x^2)/(1 + Sqrt[3] - x)^
2]*EllipticE[ArcSin[(1 - Sqrt[3] - x)/(1 + Sqrt[3] - x)], -7 - 4*Sqrt[3]])/(Sqrt[(1 - x)/(1 + Sqrt[3] - x)^2]*
Sqrt[1 - x^3])

________________________________________________________________________________________

Rubi [A]  time = 0.024946, antiderivative size = 143, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.05, Rules used = {1877} \[ \frac{2 \sqrt{1-x^3}}{-x+\sqrt{3}+1}-\frac{\sqrt [4]{3} \sqrt{2-\sqrt{3}} (1-x) \sqrt{\frac{x^2+x+1}{\left (-x+\sqrt{3}+1\right )^2}} E\left (\sin ^{-1}\left (\frac{-x-\sqrt{3}+1}{-x+\sqrt{3}+1}\right )|-7-4 \sqrt{3}\right )}{\sqrt{\frac{1-x}{\left (-x+\sqrt{3}+1\right )^2}} \sqrt{1-x^3}} \]

Antiderivative was successfully verified.

[In]

Int[(-1 + Sqrt[3] + x)/Sqrt[1 - x^3],x]

[Out]

(2*Sqrt[1 - x^3])/(1 + Sqrt[3] - x) - (3^(1/4)*Sqrt[2 - Sqrt[3]]*(1 - x)*Sqrt[(1 + x + x^2)/(1 + Sqrt[3] - x)^
2]*EllipticE[ArcSin[(1 - Sqrt[3] - x)/(1 + Sqrt[3] - x)], -7 - 4*Sqrt[3]])/(Sqrt[(1 - x)/(1 + Sqrt[3] - x)^2]*
Sqrt[1 - x^3])

Rule 1877

Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Simplify[((1 - Sqrt[3])*d)/c]]
, s = Denom[Simplify[((1 - Sqrt[3])*d)/c]]}, Simp[(2*d*s^3*Sqrt[a + b*x^3])/(a*r^2*((1 + Sqrt[3])*s + r*x)), x
] - Simp[(3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]*Elli
pticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]])/(r^2*Sqrt[a + b*x^3]*Sqrt[(s*(
s + r*x))/((1 + Sqrt[3])*s + r*x)^2]), x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && EqQ[b*c^3 - 2*(5 - 3*Sqrt[3
])*a*d^3, 0]

Rubi steps

\begin{align*} \int \frac{-1+\sqrt{3}+x}{\sqrt{1-x^3}} \, dx &=\frac{2 \sqrt{1-x^3}}{1+\sqrt{3}-x}-\frac{\sqrt [4]{3} \sqrt{2-\sqrt{3}} (1-x) \sqrt{\frac{1+x+x^2}{\left (1+\sqrt{3}-x\right )^2}} E\left (\sin ^{-1}\left (\frac{1-\sqrt{3}-x}{1+\sqrt{3}-x}\right )|-7-4 \sqrt{3}\right )}{\sqrt{\frac{1-x}{\left (1+\sqrt{3}-x\right )^2}} \sqrt{1-x^3}}\\ \end{align*}

Mathematica [C]  time = 0.0110959, size = 43, normalized size = 0.3 \[ \frac{1}{2} x \left (2 \left (\sqrt{3}-1\right ) \, _2F_1\left (\frac{1}{3},\frac{1}{2};\frac{4}{3};x^3\right )+x \, _2F_1\left (\frac{1}{2},\frac{2}{3};\frac{5}{3};x^3\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(-1 + Sqrt[3] + x)/Sqrt[1 - x^3],x]

[Out]

(x*(2*(-1 + Sqrt[3])*Hypergeometric2F1[1/3, 1/2, 4/3, x^3] + x*Hypergeometric2F1[1/2, 2/3, 5/3, x^3]))/2

________________________________________________________________________________________

Maple [B]  time = 0.009, size = 368, normalized size = 2.6 \begin{align*}{-{\frac{2\,i}{3}}\sqrt{3}\sqrt{i \left ( x+{\frac{1}{2}}-{\frac{i}{2}}\sqrt{3} \right ) \sqrt{3}}\sqrt{{\frac{-1+x}{-{\frac{3}{2}}+{\frac{i}{2}}\sqrt{3}}}}\sqrt{-i \left ( x+{\frac{1}{2}}+{\frac{i}{2}}\sqrt{3} \right ) \sqrt{3}} \left ( \left ( -{\frac{3}{2}}+{\frac{i}{2}}\sqrt{3} \right ){\it EllipticE} \left ({\frac{\sqrt{3}}{3}\sqrt{i \left ( x+{\frac{1}{2}}-{\frac{i}{2}}\sqrt{3} \right ) \sqrt{3}}},\sqrt{{\frac{i\sqrt{3}}{-{\frac{3}{2}}+{\frac{i}{2}}\sqrt{3}}}} \right ) +{\it EllipticF} \left ({\frac{\sqrt{3}}{3}\sqrt{i \left ( x+{\frac{1}{2}}-{\frac{i}{2}}\sqrt{3} \right ) \sqrt{3}}},\sqrt{{\frac{i\sqrt{3}}{-{\frac{3}{2}}+{\frac{i}{2}}\sqrt{3}}}} \right ) \right ){\frac{1}{\sqrt{-{x}^{3}+1}}}}+{{\frac{2\,i}{3}}\sqrt{3}\sqrt{i \left ( x+{\frac{1}{2}}-{\frac{i}{2}}\sqrt{3} \right ) \sqrt{3}}\sqrt{{\frac{-1+x}{-{\frac{3}{2}}+{\frac{i}{2}}\sqrt{3}}}}\sqrt{-i \left ( x+{\frac{1}{2}}+{\frac{i}{2}}\sqrt{3} \right ) \sqrt{3}}{\it EllipticF} \left ({\frac{\sqrt{3}}{3}\sqrt{i \left ( x+{\frac{1}{2}}-{\frac{i}{2}}\sqrt{3} \right ) \sqrt{3}}},\sqrt{{\frac{i\sqrt{3}}{-{\frac{3}{2}}+{\frac{i}{2}}\sqrt{3}}}} \right ){\frac{1}{\sqrt{-{x}^{3}+1}}}}-{2\,i\sqrt{i \left ( x+{\frac{1}{2}}-{\frac{i}{2}}\sqrt{3} \right ) \sqrt{3}}\sqrt{{\frac{-1+x}{-{\frac{3}{2}}+{\frac{i}{2}}\sqrt{3}}}}\sqrt{-i \left ( x+{\frac{1}{2}}+{\frac{i}{2}}\sqrt{3} \right ) \sqrt{3}}{\it EllipticF} \left ({\frac{\sqrt{3}}{3}\sqrt{i \left ( x+{\frac{1}{2}}-{\frac{i}{2}}\sqrt{3} \right ) \sqrt{3}}},\sqrt{{\frac{i\sqrt{3}}{-{\frac{3}{2}}+{\frac{i}{2}}\sqrt{3}}}} \right ){\frac{1}{\sqrt{-{x}^{3}+1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-1+x+3^(1/2))/(-x^3+1)^(1/2),x)

[Out]

-2/3*I*3^(1/2)*(I*(x+1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2)*((-1+x)/(-3/2+1/2*I*3^(1/2)))^(1/2)*(-I*(x+1/2+1/2*I*3^
(1/2))*3^(1/2))^(1/2)/(-x^3+1)^(1/2)*((-3/2+1/2*I*3^(1/2))*EllipticE(1/3*3^(1/2)*(I*(x+1/2-1/2*I*3^(1/2))*3^(1
/2))^(1/2),(I*3^(1/2)/(-3/2+1/2*I*3^(1/2)))^(1/2))+EllipticF(1/3*3^(1/2)*(I*(x+1/2-1/2*I*3^(1/2))*3^(1/2))^(1/
2),(I*3^(1/2)/(-3/2+1/2*I*3^(1/2)))^(1/2)))+2/3*I*3^(1/2)*(I*(x+1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2)*((-1+x)/(-3/
2+1/2*I*3^(1/2)))^(1/2)*(-I*(x+1/2+1/2*I*3^(1/2))*3^(1/2))^(1/2)/(-x^3+1)^(1/2)*EllipticF(1/3*3^(1/2)*(I*(x+1/
2-1/2*I*3^(1/2))*3^(1/2))^(1/2),(I*3^(1/2)/(-3/2+1/2*I*3^(1/2)))^(1/2))-2*I*(I*(x+1/2-1/2*I*3^(1/2))*3^(1/2))^
(1/2)*((-1+x)/(-3/2+1/2*I*3^(1/2)))^(1/2)*(-I*(x+1/2+1/2*I*3^(1/2))*3^(1/2))^(1/2)/(-x^3+1)^(1/2)*EllipticF(1/
3*3^(1/2)*(I*(x+1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2),(I*3^(1/2)/(-3/2+1/2*I*3^(1/2)))^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x + \sqrt{3} - 1}{\sqrt{-x^{3} + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1+x+3^(1/2))/(-x^3+1)^(1/2),x, algorithm="maxima")

[Out]

integrate((x + sqrt(3) - 1)/sqrt(-x^3 + 1), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{-x^{3} + 1}{\left (x + \sqrt{3} - 1\right )}}{x^{3} - 1}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1+x+3^(1/2))/(-x^3+1)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-x^3 + 1)*(x + sqrt(3) - 1)/(x^3 - 1), x)

________________________________________________________________________________________

Sympy [A]  time = 1.71918, size = 97, normalized size = 0.68 \begin{align*} \frac{x^{2} \Gamma \left (\frac{2}{3}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{2}, \frac{2}{3} \\ \frac{5}{3} \end{matrix}\middle |{x^{3} e^{2 i \pi }} \right )}}{3 \Gamma \left (\frac{5}{3}\right )} - \frac{x \Gamma \left (\frac{1}{3}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{3}, \frac{1}{2} \\ \frac{4}{3} \end{matrix}\middle |{x^{3} e^{2 i \pi }} \right )}}{3 \Gamma \left (\frac{4}{3}\right )} + \frac{\sqrt{3} x \Gamma \left (\frac{1}{3}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{3}, \frac{1}{2} \\ \frac{4}{3} \end{matrix}\middle |{x^{3} e^{2 i \pi }} \right )}}{3 \Gamma \left (\frac{4}{3}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1+x+3**(1/2))/(-x**3+1)**(1/2),x)

[Out]

x**2*gamma(2/3)*hyper((1/2, 2/3), (5/3,), x**3*exp_polar(2*I*pi))/(3*gamma(5/3)) - x*gamma(1/3)*hyper((1/3, 1/
2), (4/3,), x**3*exp_polar(2*I*pi))/(3*gamma(4/3)) + sqrt(3)*x*gamma(1/3)*hyper((1/3, 1/2), (4/3,), x**3*exp_p
olar(2*I*pi))/(3*gamma(4/3))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x + \sqrt{3} - 1}{\sqrt{-x^{3} + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-1+x+3^(1/2))/(-x^3+1)^(1/2),x, algorithm="giac")

[Out]

integrate((x + sqrt(3) - 1)/sqrt(-x^3 + 1), x)